• 趋势分析

    掌控网站性能变化曲线,为网站速度优化提供有力的参考 [详细介绍]

  • 错误分析

    24小时监控数据的报错分析,网站在什么时间访问出错... [详细介绍]

  • 区域分析

    通过区域分析,迅速找出网站在哪些地方速度慢 [详细介绍]

  • ISP分析

    通过ISP分析,迅速找出网站在哪些运营商速度慢 [详细介绍]

  • 监测点分析

    提供监测点数据,以便反向查找问题 [详细介绍]

测速排名 今日 本周 本月

排名 域名 时间
1 www.42852.com 0.99254s
2 www.68641.com 0.93891s
3 www.6949.com 0.65861s
4 www.13257.com 0.49288s
5 www.41363.com 0.25386s
6 www.85095.com 0.25023s
7 www.7767.com 0.18768s
8 www.60513.com 0.76067s
9 www.hg5368.com 0.59620s
10 www.30200.com 0.17578s

最新测速

域名 类型 时间
www.66511.com get 0s
www.9545.com get 0.14264s
www.32131.com get 2.51497s
www.43682.com get 0.129973s
www.hg4716.com get 2.185647s
www.25684.com get 1.511793s
www.hg4100.com get 1.965555s
www.hg1033.com get 1.46813s
www.35909.com get 0.291105s
www.70200.com ping 0.126017s

更新动态 更多

 

http://ymwcob.cn | http://www.si74tly.cn | http://m.lkxq9m5nna.cn | http://wap.vsp3g9x8u.cn | http://web.dprn6nt.cn | http://ios.zhpz0rt.cn | http://anzhuo.v09g8lk.cn | http://book.dwc7v85.cn | http://news.i33yd5r86.cn

www.4145.com,www.35043.com测速|网站测速|网站速度测试

值得一提的是,本次诺贝尔化学奖颁给锂离子电池研究,再度印证了诺贝尔奖对跨学科研究的日益重视。诺贝尔委员会在颁奖现场接受新华社记者提问时说,未来可能更多的新发现来自于多学科的研究合作,我们看到了化学和生物、物理相结合,可能还会有科学与工程、设计的结合。

△2019年诺贝尔化学奖新闻发布会现场,三位科学家获奖。新华社发

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

20世纪70年代的石油危机催生了对新能源储能的需求,也推动了电池研发,为未来锂离子电池打下基础。当时正致力于超导体研发的惠廷厄姆创新地使用二硫化钛作为阴极材料存储锂离子,以金属锂作为部分阳极材料,制成了首个新型电池。但由于金属锂化学特性过于活泼,这种电池具有易爆炸的潜在危险。

本届诺贝尔化学奖花落锂离子电池可谓众望所归。早在20世纪70、80年代,三位获奖研究者就确立了现代锂离子电池的基本框架,20世纪90年代起,锂离子电池开始大规模进入市场,如今已几乎无处不在。

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

小电池大作用,这个推动人类社会前进的发明终于获得诺贝尔奖的认可。瑞典皇家科学院9日宣布,将2019年诺贝尔化学奖授予来自美国的科学家约翰·古迪纳夫、斯坦利·惠廷厄姆和日本科学家吉野彰,以表彰他们在锂离子电池研发领域作出的贡献。

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

总之,自从1991年首次进入市场以来,锂离子电池就彻底改变了我们的生活。诺奖官网表示,“它们奠定了无线、无化石燃料社会的基础,极大地推动了人类的发展。”

在远隔重洋的日本,吉野彰研发的阳极材料和古迪纳夫的阴极材料形成“天作之合”。吉野彰发现,石油焦炭可作为更好的阳极,但因找不到合适的阴极材料而苦恼。直到他读到古迪纳夫的论文,才兴奋地说“他的发现给了我所需要的一切”。至此,以钴酸锂为阴极,以碳材料为阳极的锂离子电池诞生了。

“这三位科学家的研究,从提出锂离子电池的原型概念开始,到实用化电极材料的筛选优化,再到锂离子电池在商业化初期的构架和工艺设计,实现了从基础研究到大规模应用的重要突破,获奖是实至名归的,也是大家期待已久的。”金钟告诉记者,他们对锂离子电池的科学原理的研究,具有很重要的学术价值,对现在研发新型电池仍有非常重要的指导作用。

△2019年诺贝尔化学奖新闻发布会现场,三位科学家获奖。新华社发

在约翰·古迪纳夫研究的基础上,日本科学家吉野彰1985年研发了第一个可商用的电池,在电池的阳极使用了一种碳材料,替代了活性锂,可以插入锂离子。结果制成了重量轻、坚固耐用的电池,在其性能下降之前可以充电数百次。锂离子电池的优点在于,它们不是基于分解电极的化学反应,而是基于锂离子在阳极和阴极之间来回流动。

“电池的研究是一个非常有活力、引人入胜的研究领域。”金钟透露,科学家们正在开发下一代更高性能的锂离子电池,比如全固态、柔性锂离子电池等,也在研究其他的新型电池,包括锂硫电池、多价离子电池、金属空气电池和液流电池等,大家认为这些新型电池有希望在很多不同的应用场景发挥非常重要的作用。

诺贝尔委员会成员奥洛夫·拉姆斯特伦评价获奖成果时说:“这一神奇电池所带来的巨大的、惊人的社会影响有目共睹。”诺贝尔委员会还说,获奖研究有助于我们从由化石燃料驱动的生活方式转向由电能驱动的生活方式,对于应对气候变化也至关重要。